Géométrie et Algèbre Essentielles

10 décembre 2025

Crée tes propres fiches en 30 secondes

Colle ton cours, Revizly le transforme en résumé, fiches, flashcards et QCM.

Commencer gratuitement

Résumé pour révision : Géométrie et Algèbre

1. Vue d'ensemble

Ce chapitre couvre les concepts fondamentaux de géométrie plane (quadrilatères, triangles, théorèmes, angles, longueurs, aires, trigonométrie) et d'algèbre (proportionnalités, fractions, puissances, radicaux, modélisation par équations et inéquations). Il met l'accent sur la compréhension des figures, la démonstration de propriétés, l'utilisation de théorèmes classiques, ainsi que la résolution d'exercices illustrant ces notions pour une maîtrise orientée examens.


2. Concepts clés & Éléments essentiels

Géométrie

  • Quadrilatères : Carré, losange, rectangle, parallelogramme, trapèze, propriétés de leurs côtés, diagonales, et angles.
  • Triangles : Isocèle, équilatéral, rectangle, propriétés des medians, bissectrices, hauteurs; critères d'alignement, construction.
  • Théorème de Pythagore et de Thalès : relations entre longueurs, déductions géométriques.
  • Angles et mesures : Somme des angles, angles alternes-internes, angles au centre et inscrit.
  • Aires : Triangle, rectangle, parallélogramme, trapèze, cercle.
  • Médiatrices, bissectrices, hauteurs : concourance en un point (Centre du cercle circonscrit/inscrit, orthocentre).
  • Figures remarquables : diagonales, médianes, côtés parallèles, égalités d’angles et de longueurs.

Algèbre

  • Proportionnalité : tableaux, règles de trois, applications (ex: dépenses, revenus).
  • Fractions : simplification, calculs, ordre croissant, conversion en forme irrégulière ou décimale.
  • Puissances et radicaux : simplification, manipulation algébrique (ex : $a^3 \times a^2$), propriétés.
  • Modélisation : résolution d’équations simples et inéquations, problématiques appliquées (ex : coûts, distances).
  • Inéquations : résolution, comparatifs de tarifs, mesures, variations en pourcentages.
  • Nombres : évolution en pourcentage, nombres décimaux, scientifiques, racines carrées.

3. Points à Haut Rendement

  • Formules fondamentales :

    • Pythagore : dans triangle rectangle, hypotenuse $ c $ : $ c^2 = a^2 + b^2 $.
    • Aire triangle : $ \frac{\text{base} \times \text{hauteur}}{2} $.
    • Surface sphère : $ 4 \pi R^2 $.
    • Surface cercle : $ \pi R^2 $.
  • Relations :

    • Deux droites parallèles coupées par une même transversale : angles alternes-internes égaux.
    • Diagonales de losange / rectangle / carré : propriétés selon figures.
  • Méthodes :

    • Médiatrices et bissectrices : concourance en un point (cercle circonscrit/inscrit).
    • Théorème de Thalès : relations de proportionnalité dans un triangle.
  • Résolution d’équations :

    • Fonction d’annulation simple (ex : $ ax + b = 0 $).
    • Résolution d’inéquations avec multiplication ou division par des variables positives ou négatives.
  • Pourcentages et proportions : calculs rapides, conversions en fractions.

  • Nombres en puissances, radicaux : simplifications maximales, formes irréductibles.


4. Tableau de Synthèse

ConceptPoints ClésNotes
QuadrilatèresCaractéristiques, diagonales, propriétés d’égalitéCarré = rectangle + losange, diagonales perpendiculaires dans losange
TrianglesCritères d’isocèle/en équil./rectangle; propriétés des médianes, bissectrices, hauteursMédiatrices concourantes, propriétés des angles
Théorème de Pythagore$ c^2 = a^2 + b^2 $Utilisé dans triangles rectangles, pour calculs de longueurs
Théorème de ThalèsRelations de proportionnalité dans figuresIntermédiaire pour résolution d’échelles et modèles
AiresFormules pour figures usuellesProportionnelle à la surface, relations avec longueurs
AnglesSomme 180°, angles alternes-internes, angles au centre/inscritRelations fondamentales pour démonstrations
Médiatrices/Bissectrices/hauteursConcourantes, centres de figures circonscrites/inscritesPoints remarquables (centres, orthocentre)

5. Mini-Schéma (ASCII)

Quadrilatère
 ├─ Carré
 │   ├─ Diagonales perpendiculaires, angles droits
 │   └─ Diagonales  se bisectent
 └─ Losange
     └─ Quatre côtés égaux, diagonales perpendiculaires

Triangulation
 ├─ Isocèle
 │   ├─ Médiane, bissectrice, hauteur confondues
 │   └─ Deux angles égaux
 ├─ Rectangle
 │   └─ Un angle droit, diagonales égales
 └─ Equilatéral
     └─ Trois côtés et trois angles égaux

Théorèmes
 ├─ Pythagore
 │   └─ c² = a² + b²
 └─ Thalès
     └─ Relations de proportionnalité dans dessins

6. Bullets de Révision Rapide

  • Droites parallèles, angles alternes, angles au centre et inscrit.
  • Formules d’aire : triangle = base × hauteur / 2.
  • Théorème de Pythagore pour triangles rectangles.
  • Médiatrices, bissectrices, hauteurs : points de concours (centre du cercle circonscrit, inscirpt).
  • Relations de proportionnalité via Thalès.
  • Résolution d’équations et d’inéquations simples.
  • Formes radicales : réduction, simplification avec radical irréluctible.
  • Travaux géométriques : propriétés de carrés, rectangles, losanges.
  • Application à des problèmes : coûts, distances, pourcentages.

Ce résumé synthétise toutes les notions essentielles dans l’ordre du cours pour une révision efficace et précise en vue des examens.