12 décembre 2025
Colle ton cours, Revizly le transforme en résumé, fiches, flashcards et QCM.
| Concept | Key Points | Notes |
|---|---|---|
| Classical NLP pipeline | Tokenization, morphology, syntax, semantics, pragmatics | Layered analysis from raw text to intent |
| Bag of Words / TF–IDF | Fast, simple, ignores structure | Limited for deep understanding |
| Word embeddings | Dense vectors, capture similarity | Static (Word2Vec, GloVe); limited polysemy handling |
| Contextual embeddings | Dynamic, context-aware | BERT, GPT; handle polysemy and context shifts |
| Neural sequence models | RNNs, LSTMs, attention | Process sequences, focus on relevant info |
| Transformers | Parallel, self-attention | Foundation of modern NLP, scalable |
| Large Language Models | Encoder, decoder, encoder–decoder | Tasks: classification, generation, translation |
| Tools | spaCy, Hugging Face | Practical NLP implementation |
| Responsible NLP | Balance accuracy, interpretability, fairness | Minimize bias, energy use, ensure privacy |
NLP & HCI
├─ Interaction paradigms
│ ├─ Button/menu commands
│ └─ Natural language understanding
├─ Classical pipeline
│ ├─ Tokenization
│ ├─ Morphology & POS
│ ├─ Syntax parsing
│ ├─ Semantics mapping
│ └─ Pragmatic inference
├─ Word representations
│ ├─ Bag of Words / TF–IDF
│ ├─ Static embeddings (Word2Vec, GloVe)
│ └─ Contextual embeddings (BERT, GPT)
├─ Neural models
│ ├─ RNNs / LSTMs
│ ├─ Attention mechanisms
│ └─ Transformers
├─ Large language models
│ ├─ Encoder-only (BERT)
│ ├─ Decoder-only (GPT)
│ └─ Encoder–decoder (T5, BART)
├─ Practical tools
│ ├─ spaCy
│ └─ Hugging Face
└─ Responsible NLP
├─ Accuracy vs interpretability
├─ Bias, fairness, privacy
└─ Sustainability
Fiche de révision
Colle ton cours, Revizly le transforme en résumé, fiches, flashcards et QCM.
| Item | Key Features | Notes / Differences |
|---|---|---|
| Classical NLP pipeline | Tokenization → Morphology/POS → Syntax → Semantics → Pragmatics | Layered analysis from raw text to meaning |
| Bag of Words / TF–IDF | Unordered, simple, fast; weights important words | Ignores word order and structure |
| Static embeddings | Word2Vec, GloVe; fixed vectors for words | Limited by polysemy; context-independent |
| Contextual embeddings | BERT, GPT; dynamic, context-dependent | Handle polysemy; adapt meaning based on context |
| Neural sequence models | RNNs, LSTMs; process sequences with memory | Struggle with long dependencies |
| Attention mechanisms | Focus on relevant parts of input | Improve relevance in sequence processing |
| Transformers | Parallel, self-attention; foundation of modern NLP | Efficient, scalable, handle long-range dependencies |
| Large Language Models | Encoder-only (BERT), decoder-only (GPT), encoder–decoder (T5) | Capable of understanding and generating language |
NLP & HCI
├─ Interaction paradigms
│ ├─ Button/menu commands
│ └─ Natural language understanding
├─ Classical pipeline
│ ├─ Tokenization
│ ├─ Morphology & POS
│ ├─ Syntax parsing
│ ├─ Semantics mapping
│ └─ Pragmatic inference
├─ Word representations
│ ├─ Bag of Words / TF–IDF
│ ├─ Static embeddings (Word2Vec, GloVe)
│ └─ Contextual embeddings (BERT, GPT)
├─ Neural models
│ ├─ RNNs / LSTMs
│ ├─ Attention mechanisms
│ └─ Transformers
├─ Large language models
│ ├─ Encoder-only (BERT)
│ ├─ Decoder-only (GPT)
│ └─ Encoder–decoder (T5, BART)
├─ Practical tools
│ ├─ spaCy
│ └─ Hugging Face
└─ Responsible NLP
├─ Accuracy vs interpretability
├─ Bias, fairness, privacy
└─ Sustainability
End of Revision Sheet
Envie de plus de flashcards ?
Génère des dizaines de flashcards à partir de tes cours
NLP — core task?
Cliquer pour retourner
Extract meaning from human language
Envie de plus de QCM ?
Génère des dizaines de questions à partir de tes cours
Progression par thème
Basée sur vos réponses aux QCM
Thèmes commencés
Thèmes maîtrisés
Questions répondues
Fonctionnalité Premium
Avec Premium, visualisez exactement où vous en êtes dans chaque chapitre. Identifiez vos points forts et vos lacunes pour réviser plus efficacement.