Retour

AI Language Interaction and Technologies

12 décembre 2025

Crée tes propres fiches en 30 secondes

Colle ton cours, Revizly le transforme en résumé, fiches, flashcards et QCM.

Commencer gratuitement

AI Practice and Technologies Interacting with Humans and the Real World

1. Overview

  • Focus on natural language processing (NLP) and human–computer interaction (HCI)
  • Location: within computational linguistics and AI systems
  • Role: enabling machines to interpret, understand, and generate human language naturally
  • Key ideas: progression from recognition to understanding, classical NLP pipeline, word embeddings, neural models, tools, and responsible AI considerations

2. Core Concepts & Key Elements

  • Traditional interaction: machines follow precise commands; limited flexibility
  • NLP aims to interpret natural language, making HCI more intuitive
  • Technologies: voice assistants, chatbots, translation tools, search engines, smart replies
  • Language's importance: natural, flexible, ambiguous, and context-dependent
  • Challenges: resolving ambiguity, understanding intent, and context
  • Recognition vs understanding: surface form vs meaning
  • Classical NLP pipeline:
    • Tokenization
    • Morphology & POS tagging
    • Syntax parsing
    • Semantics mapping
    • Pragmatics interpretation
  • Bag of Words & TF–IDF: simple, fast, but lose structure
  • Word embeddings: vector space models based on distributional hypothesis
  • Static embeddings: Word2Vec, GloVe; limited by polysemy
  • Contextual embeddings: BERT, GPT; dynamic, context-dependent
  • Neural sequence models:
    • RNNs and LSTMs for sequence processing
    • Attention mechanisms for relevance weighting
    • Transformers for parallel, global context modeling
  • Large Language Models (LLMs):
    • Encoder-only (BERT), decoder-only (GPT), encoder–decoder (T5, BART)
    • Capable of understanding and generating language
  • Practical tools:
    • spaCy: fast, rule-based, suitable for practical applications
    • Hugging Face Transformers: state-of-the-art neural models, flexible
  • Responsible NLP:
    • Balancing accuracy and interpretability
    • Addressing bias, fairness, privacy, and energy consumption
  • Emerging trends:
    • Instruction tuning, retrieval-augmented generation, tool use
    • Multilingual and low-resource language support
    • Long-context understanding, safety, and controllability

3. High-Yield Facts

  • NLP's core task: extract meaning from human language for useful responses
  • Classical pipeline steps:
    • Tokenization: splits text into units; complex across languages
    • Morphology: identifies grammatical forms; ambiguous without context
    • Syntax: builds structure; resolves roles
    • Semantics: maps to concepts; e.g., action, participant, time
    • Pragmatics: infers intent from context
  • Bag of Words: unordered, ignores structure
  • TF–IDF: weights important words; still ignores order
  • Word embeddings: words as vectors; proximity reflects similarity
  • Famous analogy: king – man + woman ≈ queen
  • Static embeddings: limited by polysemy
  • Contextual embeddings: dynamically adjust based on surrounding words
  • RNNs/LSTMs: process sequences with memory; struggle with long dependencies
  • Attention: allows models to focus on relevant parts of input
  • Transformers: parallel processing, self-attention, foundation of modern NLP
  • LLMs: scale models for understanding and generation tasks
  • Tools:
    • spaCy: fast, rule-based NLP
    • Hugging Face: neural models, flexible, state-of-the-art
  • Trade-offs:
    • Accuracy vs interpretability
    • Model size vs resource consumption
    • Inclusivity vs bias
  • Evaluation metrics:
    • F1 for extraction/classification
    • BLEU/ROUGE for translation/summarization
    • Human judgment for quality
  • Sustainability:
    • Minimize model size, cache, batch requests
    • Use quantization and distillation
  • Future directions:
    • Instruction tuning, retrieval, tool integration
    • Multilingual support, long-context models
    • Safety, fairness, privacy

4. Summary Table

ConceptKey PointsNotes
Classical NLP pipelineTokenization, morphology, syntax, semantics, pragmaticsLayered analysis from raw text to intent
Bag of Words / TF–IDFFast, simple, ignores structureLimited for deep understanding
Word embeddingsDense vectors, capture similarityStatic (Word2Vec, GloVe); limited polysemy handling
Contextual embeddingsDynamic, context-awareBERT, GPT; handle polysemy and context shifts
Neural sequence modelsRNNs, LSTMs, attentionProcess sequences, focus on relevant info
TransformersParallel, self-attentionFoundation of modern NLP, scalable
Large Language ModelsEncoder, decoder, encoder–decoderTasks: classification, generation, translation
ToolsspaCy, Hugging FacePractical NLP implementation
Responsible NLPBalance accuracy, interpretability, fairnessMinimize bias, energy use, ensure privacy

5. Mini-Schema (ASCII)

NLP & HCI
 ├─ Interaction paradigms
 │   ├─ Button/menu commands
 │   └─ Natural language understanding
 ├─ Classical pipeline
 │   ├─ Tokenization
 │   ├─ Morphology & POS
 │   ├─ Syntax parsing
 │   ├─ Semantics mapping
 │   └─ Pragmatic inference
 ├─ Word representations
 │   ├─ Bag of Words / TF–IDF
 │   ├─ Static embeddings (Word2Vec, GloVe)
 │   └─ Contextual embeddings (BERT, GPT)
 ├─ Neural models
 │   ├─ RNNs / LSTMs
 │   ├─ Attention mechanisms
 │   └─ Transformers
 ├─ Large language models
 │   ├─ Encoder-only (BERT)
 │   ├─ Decoder-only (GPT)
 │   └─ Encoder–decoder (T5, BART)
 ├─ Practical tools
 │   ├─ spaCy
 │   └─ Hugging Face
 └─ Responsible NLP
     ├─ Accuracy vs interpretability
     ├─ Bias, fairness, privacy
     └─ Sustainability

6. Rapid-Review Bullets

  • NLP transforms raw text into structured, meaningful data
  • Classical pipeline: tokenization → morphology → syntax → semantics → pragmatics
  • Bag of Words and TF–IDF are fast but lose context
  • Word embeddings encode semantic similarity in vector space
  • Static embeddings struggle with polysemy; contextual embeddings solve this
  • RNNs/LSTMs process sequences with memory; attention improves relevance
  • Transformers enable parallel, global context modeling
  • Large language models (BERT, GPT, T5) scale understanding and generation
  • spaCy: fast, rule-based NLP library; good for practical tasks
  • Hugging Face: extensive neural model hub; state-of-the-art performance
  • Trade-offs: accuracy vs interpretability, resource use, bias
  • Evaluation combines metrics and human judgment
  • Sustainable NLP: minimize model size, cache, batch requests
  • Future trends: instruction tuning, retrieval, multimodal models, safety
  • Responsible NLP balances power, fairness, privacy, and environmental impact

AI Language Interaction and Technologies

Fiche de révision

Crée tes propres fiches en 30 secondes

Colle ton cours, Revizly le transforme en résumé, fiches, flashcards et QCM.

Commencer gratuitement

AI Practice and Technologies Interacting with Humans and the Real World — Revision Sheet


1. 📌 Essentials

  • NLP enables machines to interpret, understand, and generate human language naturally.
  • Classical NLP pipeline: tokenization, morphology/POS tagging, syntax, semantics, pragmatics.
  • Word embeddings (static and contextual) represent words as vectors capturing meaning.
  • Transformersized NLP with parallel processing and self-attention.
  • Large Language Models (LLMs): BERT, GPT, T5, capable of understanding and generating language.
  • Practical tools: spaCy (fast, rule-based), Hugging Face (state-of-the-art neural models).
  • Responsible NLP: address bias, fairness, privacy, and energy consumption.
  • Challenges include ambiguity, context-dependence, and intent recognition.
  • Hierarchical flow: raw text → structured understanding → response or action.
  • Future trends: instruction tuning, retrieval augmentation, multilingual models, safety.

2. 🧩 Key Structures & Components

  • Tokenization — splits text into units (words, subwords).
  • Morphology & POS tagging — identifies grammatical forms and parts of speech.
  • Syntax parsing — builds sentence structure (trees, dependencies).
  • Semantics mapping — assigns meaning to words/phrases.
  • Pragmatics — infers speaker intent based on context.
  • Word Embeddings — dense vector representations of words.
  • Static embeddings — Word2Vec, GloVe; limited polysemy handling.
  • Contextual embeddings — BERT, GPT; dynamic, context-aware.
  • Neural sequence models — RNNs, LSTMs, attention mechanisms.
  • Transformers — parallel, self-attention-based models.
  • Large Language Models — encoder-only, decoder-only, encoder–decoder architectures.
  • Tools — spaCy, Hugging Face Transformers.

3. 🔬 Functions, Mechanisms & Relationships

  • Pipeline flow: raw text → tokenization → morphology/POS → syntax parsing → semantics → pragmatics.
  • Embeddings: convert words into vectors; proximity indicates similarity.
  • Static vs. contextual embeddings: static (Word2Vec) are fixed; contextual (BERT) change with context.
  • Neural models: process sequences, with RNNs/LSTMs capturing order; attention highlights relevant info.
  • Transformers: use self-attention to model global context in parallel.
  • LLMs: scale models for diverse tasks—classification, translation, generation.
  • Tools: implement NLP tasks efficiently; spaCy for speed, Hugging Face for flexibility.
  • Responsible NLP: balance accuracy, interpretability, and ethical considerations.

4. 📊 Comparative Table

ItemKey FeaturesNotes / Differences
Classical NLP pipelineTokenization → Morphology/POS → Syntax → Semantics → PragmaticsLayered analysis from raw text to meaning
Bag of Words / TF–IDFUnordered, simple, fast; weights important wordsIgnores word order and structure
Static embeddingsWord2Vec, GloVe; fixed vectors for wordsLimited by polysemy; context-independent
Contextual embeddingsBERT, GPT; dynamic, context-dependentHandle polysemy; adapt meaning based on context
Neural sequence modelsRNNs, LSTMs; process sequences with memoryStruggle with long dependencies
Attention mechanismsFocus on relevant parts of inputImprove relevance in sequence processing
TransformersParallel, self-attention; foundation of modern NLPEfficient, scalable, handle long-range dependencies
Large Language ModelsEncoder-only (BERT), decoder-only (GPT), encoder–decoder (T5)Capable of understanding and generating language

5. 🗂️ Hierarchical Diagram (ASCII)

NLP & HCI
 ├─ Interaction paradigms
 │   ├─ Button/menu commands
 │   └─ Natural language understanding
 ├─ Classical pipeline
 │   ├─ Tokenization
 │   ├─ Morphology & POS
 │   ├─ Syntax parsing
 │   ├─ Semantics mapping
 │   └─ Pragmatic inference
 ├─ Word representations
 │   ├─ Bag of Words / TF–IDF
 │   ├─ Static embeddings (Word2Vec, GloVe)
 │   └─ Contextual embeddings (BERT, GPT)
 ├─ Neural models
 │   ├─ RNNs / LSTMs
 │   ├─ Attention mechanisms
 │   └─ Transformers
 ├─ Large language models
 │   ├─ Encoder-only (BERT)
 │   ├─ Decoder-only (GPT)
 │   └─ Encoder–decoder (T5, BART)
 ├─ Practical tools
 │   ├─ spaCy
 │   └─ Hugging Face
 └─ Responsible NLP
     ├─ Accuracy vs interpretability
     ├─ Bias, fairness, privacy
     └─ Sustainability

6. ⚠️ High-Yield Pitfalls & Confusions

  • Confusing static and contextual embeddings; static cannot handle polysemy well.
  • Overlooking the importance of syntax parsing in semantic understanding.
  • Assuming larger models always outperform smaller ones without considering resource constraints.
  • Misinterpreting bag of words as capturing syntax or context.
  • Ignoring bias and fairness issues in large models.
  • Believing tokenization is trivial; it varies greatly across languages.
  • Overestimating the interpretability of neural models.
  • Confusing encoder-only (BERT) with decoder-only (GPT) architectures.

7. ✅ Final Exam Checklist

  • Understand the stages of the classical NLP pipeline.
  • Differentiate between static and contextual word embeddings.
  • Know key models: RNNs, LSTMs, Transformers, BERT, GPT.
  • Be familiar with practical NLP tools: spaCy, Hugging Face.
  • Recognize the importance of responsible AI: bias, fairness, privacy.
  • Comprehend how attention mechanisms improve relevance.
  • Know evaluation metrics: F1, BLEU, ROUGE.
  • Be aware of sustainability practices: model compression, caching.
  • Understand future trends: instruction tuning, retrieval-augmented generation.
  • Grasp the hierarchical flow from raw text to meaningful response.
  • Recognize challenges: ambiguity, context-dependence, multilinguality.
  • Know the differences between model architectures and their applications.
  • Be prepared to discuss ethical considerations in deploying NLP systems.

End of Revision Sheet

AI Language Interaction and Technologies

Envie de plus de flashcards ?

Génère des dizaines de flashcards à partir de tes cours

Premium
Progression : 0 / 3 cartes vues0%
Question

NLP — core task?

Cliquer pour retourner

Réponse

Extract meaning from human language

AI Language Interaction and Technologies

Envie de plus de QCM ?

Génère des dizaines de questions à partir de tes cours

Premium
Progression : 0 / 3 questions répondues0%
1

What is the primary goal of natural language processing (NLP) in human–computer interaction?

To replace human communication entirely
To develop new programming languages for AI systems
To enable machines to interpret, understand, and generate human language naturally
To improve hardware performance for AI applications

AI Language Interaction and Technologies

Progression par thème

Progression globale

Basée sur vos réponses aux QCM

67%
4/5

Thèmes commencés

2

Thèmes maîtrisés

24

Questions répondues

Détail par thème

1

Introduction au système

85%
2

Les différents types

72%
3

Structure axiale

45%
4

Structure appendiculaire

0%

Fonctionnalité Premium

Suivi de progression par thème

Premium

Avec Premium, visualisez exactement où vous en êtes dans chaque chapitre. Identifiez vos points forts et vos lacunes pour réviser plus efficacement.

Score par thème
Progression globale
Objectifs personnalisés
3,30€/mois-50% annuel
Passer Premium